STEREOCHEMISTRY OF BASE-CATALYZED ELIMINATIONS FROM 2-ALKYL BROMIDES

Richard A. Bartsch

Department of Chemistry, Washington State University, Pullman, Washington, U.S.A., 99163 (Received in USA 3 November 1969; received in UK for publication 22 December 1969)

A <u>syn</u>-elimination stereochemistry has been postulated in eliminations from 2-hexyl chloride, bromide, and iodide induced by <u>t</u>-BuOK/DMSO on the basis of the very high <u>trans-/cis-2-hexene</u> ratios observed (1). A stereochemical study of eliminations from 2-alkyl halides exhibiting high <u>trans-/cis-2-alkene</u> ratios (<u>i.e.</u>, promoted by <u>t-BuOK/DMSO</u> and <u>n-Bu₄NF/DMF</u> (2)) seemed warranted. We report the results of such an investigation using erythro-3-deutero-2-bromobutane, <u>I.</u>

<u>I</u> was prepared by the procedure of Skell and Hall (3) with the modification of keeping the reaction mixture temperature between -95° and -85° during irradiation. The presence of approximately 3% of contaminating <u>threo</u>-isomer was indicated by 6% of <u>trans</u>-2-butene-d in the <u>trans</u>-2-butene formed in reactions of <u>I</u> with KOET/EtOH (Table 2).

 \underline{I} and undeuterated 2-butyl bromide, \underline{II} , were subjected to elimination reactions in three different base/solvent systems. The relative olefinic proportions are presented in Table 1. The $k_{\rm H}/k_{\rm D}$ values in Table 1 are calculated from the product percentages (4).

The $k_{\rm H}/k_{\rm D}$ values show that deuterium was not removed during formation of <u>cis-2-butene</u>, but deuterium loss was involved in formation of <u>trans-2-butene</u>. The isotopic analysis of the olefins (Table 2) supports this conclusion. The data demonstrate quite clearly that both <u>cis-</u> and <u>trans-2-butene</u> are formed by <u>anti-elimination</u> in reactions of <u>I</u> with <u>t-BuOK/DMSO</u> and <u>n-Bu_ANF/DMF</u>.

This work was supported in part by the National Science Foundation.

 $\label{table 1}$ Olefin Proportions and $k_{\rm H}/k_{\rm D}$ Values from Elimination of $\underline{erythro}\text{--}3\text{--}{\rm Deutero--}2\text{--}{\rm bromobutane}$

Reaction Conditions	Reactant	1-Butene %	trans-	2-Butene ^a k _H /k _D	<u>cis-2</u> %	-Butene k _H /k _D
EtOK/EtOH (70°)	I	35.8 ^b 20.8	29.4 58.6	3.4	34.8 20.6	1.0
<u>t</u> -BuOK/DMSO (30°) I	53.3 29.4	21.0 55.0	4.5	25.7 15.5	1.1
\underline{n} -Bu ₄ NF/DMF (50°) I II	33.1 16.7	33.1 64.5	3.6	33.8 18.7	1.1

a Corrected for presence of trans-2-butene-d.

TABLE 2

Isotopic Composition^{a,b} of Olefins from Elimination of erythro-3-Deuterio-2-bromobutane

	EtOK/EtOH %	<u>t</u> - BuOK/DMSO %	<u>n</u> - Bu ₄ NF/DMF
1-butene-d	100	100	100
1-butene	0	0	0
trans-2-butene-d	6	6	6
trans-2-butene	94	94	94
cis-2-butene-d	100	100	100
cis-2-butene	0	0	0

A Measured by mass spectrometry at low ionizing voltage.

REFERENCES

- (1) R. A. Bartsch and J. F. Bunnett, <u>J. Am. Chem. Soc.</u>, <u>91</u>, 1382 (1969).
- (2) R. A. Bartsch, J. Org. Chem., accepted for publication.
- (3) P. S. Skell and R. G. Allen, <u>J. Am. Chem. Soc.</u>, <u>81</u>, 5383 (1959).
- (4) M. Svoboda, J. Zavada and J. Sicher, Coll. Czech. Chem. Commun., 32, 2104 (1967).

b These olefinic proportions agree with those given in reference 3.

b Uncertainty estimate as ± 1%.